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Chemistry of Electron Transfer and Oxygen Transfer 
in Fused Salts1 

Sir: 
The oxygen electrode in molten alkali nitrate solvents 

has been the subject of significant controversies.2-6 

Recently, Inman7 has reported (at an O2(Au)IO2- elec­
trode in a lithium-potassium chloride eutectic melt at 
450°) a puzzling Nernstian slope of RT/F, in lieu of the 
expected RT/2F for 20 2~ = O2 + 4e. We have sub­
stantiated polarographically a similar remarkable find­
ing at Levich's rotated platinum disk electrode,8 in solu­
tions prepared by adding pure sodium oxide to a fused 
equimolar sodium-potassium nitrate solvent at 265°. 
Our results indicate conclusively the prevalence of the 
following oxygen-transfer (I) and electron-transfer (II) 
processes. 

Oxygen transfer 

NO3- + O2- — > NO2- + O2
2-

2NO3- + O2
2 ' ^=±: 2NO2- + 2Or 

Electron transfer 

NO2- = ^ NO2 + e 

O r =?=i O2 + e 

O2
2- =?=£: O2- + e 

d i ) 

(I2) 

(Hi) 

(H2) 

(H3) 

Because of reaction Ii, the ion O2 - cannot exist (at any 
appreciable concentration level) in equilibrium with 
nitrate melts. This is plausible in view of indications 
that in such media NO3

- indeed exhibits the properties 
of a strong and reactive oxidant.9 

The evidence on which our claim for the proposed 
reaction sequence rests is summarized in Figure 1 which 
is representative of an extensive series of experiments. 

The steady-state current-voltage (c-v) curve shown in 
Figure 1 exhibits several sigmoid "waves," reminiscent 
of the shape of classical polarograms. Four well-de­
fined limiting current domains (O are evident. Their 
dependence on the angular velocity («) of the rotated 
disk indicator electrode was found to obey Levich's8 
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Figure 1. Typical current-voltage curve (corrected for residual 
currents, etc.) recorded at 265° in platinum-lined electrolysis cell: 
electrolyte, equimolar sodium-potassium nitrate, equilibrated with 
sodium oxide (1.10 mmoles of Na2O per 1000 g of solvent); super­
natant atmosphere, dry argon; indicator electrode, Levich's 
platinum disk, rotated at 600 rpm; reference electrode, Ag | 
AgNO3(0.07 m in solvent melt). Potentials assigned in accordance 
with the Stockholm IUPAC Convention. 

applicable equations 

* = (constant)£s/!w1/!C (III) 

i/D'/l a C (when w = constant) (IV) 

where D and C denote respectively the diffusion coeffi­
cient and bulk concentration of the electroreactive 
(electrooxidizable or electroreducible) species. This 
concordance is an unequivocal diagnostic criterion indi­
cating that our experimentally observed limiting cur­
rents were controlled by the rate of transport of the elec­
troreactive species from the bulk of the melt to the elec­
trode surface, under conditions of extreme concentra­
tion polarization. 

The anodic wave designated as Hi in Figure 1 is 
readily identifiable in terms of its known half-wave po­
tential and analytic geometry characteristics3'5'10,u with 
the electrooxidation of nitrite to NO2 in accordance with 
eq Hi. The limiting current h was proportional to the 
concentration of the ion NO2

- in the bulk of the melt, as 
required by eq IV. We postulate the correspondence 
shown in Figure 1 between the other two c-v waves, on 
the one hand, and reactions H2 (superoxide ^± oxygen) 
and H3 (peroxide ^ superoxide) on the other hand. 
The rationale is outlined below. 

H3 is a composite wave whose anodic and cathodic 
limiting currents /,>a and /J(C were proportional to the 
bulk concentrations of peroxide (O2

2-) and superoxide 
(O2

-), respectively. The limiting current, Z2, of the 
anodic wave H2 was also proportional to superoxide con­
centration. Quite generally on any given c-v curve 

|/i,d = \U\ (V) 
These findings are uniquely consistent with the inter­
pretations presented in Table I. It is apparent from the 
table that limiting currents J2 and i3,c were due to the 
electrooxidation and electroreduction of the same 
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Table I. Intepretation of Current-Voltage Waves 
Applicable limiting Corresponding 

Current-voltage wave0 current eq6'e electrode process 

H2 —h = (constant)' O 2
- = O2 + e 

•D 0 l -
v *C 0 l -

H3, cathodic portion Z3,0 = (constant)- Or + e = O2
2-

0o,-"/'Ce­
lls, anodic portion — h,,. = (constant)- O2

2- = O2
- + e 

" Identified in Figure 1. 'Based on eq IV; D and C denote 
diffusion coefficients and bulk concentrations, respectively. " Cath­
odic and anodic currents are assigned positive and negative values, 
respectively. 

species (superoxide), both processes involving a one-
electron transfer. This accounts for experimental result 
V. Our data also revealed the following correlation be­
tween the "nitrite wave" (H1), on the one hand, and the 
superoxide and peroxide waves (H2 and H3), on the other 
hand. 

\h\D^o.--,h = \h+\Dw--l/l + 1.5Ih]D0,--'/' = 
k a | A v - - ! / 8 + 1.5|/3,c|Z?02--

Vs (VI) 

Equation VI is evidently consistent with the stoichiom-
etry inherent in eq Ii and I2 (= generation of 1 mole of 
nitrite per mole of peroxide, and of 1.5 moles of nitrite 
per mole of superoxide). 

Assuming the prevalence of Nernst-controlled electron-
transfer equilibria, derivations based on well-known 
principles of polarographic theory yielded the "wave 
equations" VII and VIII, where i(E) denotes the current 
at potential E and £1/, the half-wave potential. 
For H2 at 265° 

For H3 at 265° 

2.3i?r L. - UE) * , * v / + _ log g ^ (V111) 

The relevant Nernstian slopes determined from our ex­
periments were 0.109 ± 0.002 v for H2 and 0.106 ± 0.003 
v for H3, which is in good agreement with the theoretical 
assignment of(2.3RT/F) = 0.107 v in eq VII and VIII. 

The "oxygen- and electron-transfer chemistry" postu­
lated in equation sequence I—II was further confirmed by 
the following observations: (a) voltammograms similar 
to Figure 1 were obtained when sodium peroxide (in lieu 
of sodium oxide) was equilibrated with the alkali nitrate 
solvent melt, except that [/1] was relatively smaller (due 
to reaction I2 occurring in the absence of reaction Ii); (b) 
direct equilibration of the solvent with pure potassium 
superoxide (in the absence of peroxide, oxide, and ni­
trite) yielded z'3,c = — z2 (in accordance with eq V), but k 
and /3,a = 0. 

The reproducibility of the results reported in this com­
munication was critically contingent on the use of plati­
num-lined electrolysis cells (in order to obviate contact 
with silica) and on the presence of an inert and dry 
supernatant atmosphere. Otherwise, side reactions of 
the type SiO2 + O 2 - = SiO3

2-and O 2 - + H2O = 20H~ 
occurred, which may well account for discrepant reports 
in the literature. Furthermore, we found that bubbling 
of gaseous oxygen through the melts converted peroxide 
quantitatively to superoxide (O2

2- - ( - O 2 - * 2O2
-) en­

gendering a decrease of /3a, accompanied by a concom­
itant enhancement of both /3|C and k', due to this effect, 
the superoxide generated via reaction H3 did not con­
tribute to /2. 

In the formulation of eq I and II, the customary 
"chemical shorthand" (as is practiced when writing H+ 

in lieu of H3O+) was employed, ignoring solvation. 
However, solvation effects may be important in view of 
our (a priori unexpected) finding that nitrite could co­
exist with peroxide and superoxide. Further pertinent 
work is in progress. 
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Acceleration of />-Nitrophenyl Ester Cleavage Due to 
Apolar Bonding. A Model for Biologically 
Significant Apolar Interactions1,2 

Sir: 

There has been much speculation concerning the na­
ture and significance of apolar bonding in biologically 
active molecules, specifically in the maintenance of 
structure and mode of action of enzymes.3 The inter­
dependence of all the weak forces involved in the main­
tenance of enzyme structure and function makes dif­
ficult the direct study of apolar bonding in such a com­
plex system. An insight into the role played by apolar 
bonding in enzymatic catalysis may be gained without 
this difficulty by studying a model system. This model 
system should exhibit some of the important charac­
teristics of enzyme-catalyzed reactions, characteristics 
dependent upon apolar interactions. 

We wish to report such a model system exhibiting 
substantial catalytic effects which are the result of prior 
formation of a 1:1 catalyst-substrate complex held to­
gether by apolar bonding. Since the catalyst I con-

NO2 

H ? H s I ^ 

k ? 
-OOC NHCOCTH35 0=C-0(CH2)2N(CH3)2C12H25 

I II 
tains an anionic detergent portion and the substrate 
II a cationic detergent portion, interaction to form the 
catalyst-substrate complex appears to be similar to the 
strong binding observed between oppositely charged 
detergent molecules.4 The demonstration of Michae-
lis-Menten (saturation) kinetics, product inhibition, 
large salt effects, and urea denaturation in this system 
serves to verify its enzyme-like nature. 
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